
AA214A PROJECT #6: COMPUTATION OF LINEARIZED BAROTROPIC FLUID IN
A NONROTATING FRAME

Reference: G. Fischer, A Survey of Finite-Difference Approximations to the Primitive
Equations, Monthly Weather Review, Vol. 93, No.1, January 1965.
The primitive equations for a linearized system, in one space variable, for a barotropic
atmosphere on a non-rotating earth are employed. The basic differential equations are
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Physically u should be looked upon as being the velocity disturbancce superimposed on a
constant basic flow U, and p as being proportional to the depth of the fluid. The phase
velocity of gravity waves is γ and µ the coefficient of lateral diffusion. The terms with
coefficient U describe the advection of the quantities u and p due to the basic flow, while
the terms with coefficient γ define the local changes which occur due to the presence of
gravity waves, with the µ coefficient terms providing dissipation due to friction. Although
it is physically incorrect to add a viscous term to the second equation, this was done to
gain symmetry.
Take as the conditions: U = 5× 103 cm

sec , γ = 3× 104 cm
sec , and µ = 109 cm2

sec . Now one can fix
the wavelength L of disturbances and specifiy a number of grid points in x, JMAX, which
gives us a ∆x = L

JMAX . Alternatively, we can fix ∆x = 2× 107cm and vary the number of
point JMAX to study the effect of methods on various wavelenths L = JMAX ×∆x.
The flow is assumed to be periodic in x, i.e., u(x+L, t) = u(x, t), p(x+L, t) = p(x+L).
Given initial data at t = 0,
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)
, p(x, 0) = 0 (5)

we have the exact solution
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from which one can find u and p.



Project 6: Apply Euler Explicit O∆E Method in t with Flux Splitting in x.
Apply Euler explicit differencing in t

~Q(n+1) = ~Q(n) + ∆t∂t ~Q(n) (7)

Now from Eq. 3
∂t ~Q = −A∂x ~Q+ µ∂xx ~Q (8)

and therefore Eq. 7 can be written as

~Q(n+1) = ~Q(n) −∆tA∂x ~Q(n) + ∆tµ∂xx ~Q(n) (9)

The matrix A can be ± flux split into A+ and A− as discussed in class. This produces the
new system to be solved.
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where ∂bx is a backward differencing operator and ∂fx is a forward differencing operator.

Assignment

1. Derive the flux splitting equations for Eq. 10. I suggest the eigenvector matrix

X =
(

1 1
1 −1

)

2. Program Eq. 10 for the fixed wavelengths L = 2× 108cm and L = 4× 108cm using
JMAX = 10 and JMAX = 20 respectively. Use the initial condition Eq. 5.
Integrate the equations using ∆t = 4× 102sec for a total time T = 4× 106.

Apply 1st order backward/forward differences in x.

∂bxuj =
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∆x
, ∂fxuj =
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2nd order accurate formulas
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, ∂fxuj =
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and 3rd order accurate formulas

∂bxuj =
2uj+1 + 3uj − 6uj−1 + uj−2

6∆x
, ∂fxuj =

−uj+2 + 6uj+1 − 3uj − 2uj−1

6∆x

Hint: Look at my sample code for an easy way to handle periodic indices. For
example, in MATLAB let J = [1,JMAX];, let JP = J+1;, and redefine JP(JMAX)
= 1;, then JP = [2,3,.....,JMAX,1]; and u(JP(JMAX)) automatically grabs u(1)



3. Apply a different marching scheme in t. That is, replace the Euler Explicit scheme
in t with another one. I suggest RK4 or Leapfrog.

4. Plot and examine comparisons of the exact and numerical solution as a function of
time t at various points in x. In particular, x = 0.

5. Find the expression for the spatial accuracy of this method, i.e., what is ert or what
is the modified wave number for the various space differences used?

6. Find the expression for the σ root for the methods you use.

7. Derive the numerical stability condition for this system. You should get something
like, numerical stability requires that

CFL = (
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)2(|U |+ γ)2 + αµ
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with α a constant.

8. Study various ∆t and ∆x ratios, and remembering the numerical stability condition!

Suggestions, Questions:

1. What happens to the error in phase and amplitude as you refine the mesh and time
step?

2. You should play around with the ratio ∆t
∆x in the CFL definition. Why? Is there an

optimal value of CFL for accurate results?

3. What happens when you violate the stability condition? Try it.

General Instructions:
Follow the instructions given above and address each of the assignments. You will need to
provide me with a short writeup of what you have done, along with some results and
figures. This can be handwritten, but I prefer TeX, LaTeX or some other word processor
form. Perform all the computations using MATLAB. I will also want copies of all the
source codes. (You will be required to email them to me, I will make arrangements).
There will be 10 minutes allotted for a short presentation in class on what you have
accomplished. You should focus on the interesting aspects of your project.

1. Grading will be broken down as follows:

(a) Writeup: 30 points.
(b) Code: 10 points.
(c) Presentation: 10 points.

2. This will account for 50% of your grade.

3. The other 50% comes from 25 points for turned in homework and 25 points for the
midterm.


